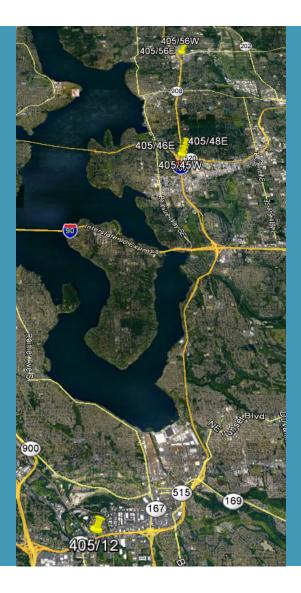


Comparison of FEE vs. SEE Lee Andrews, PE, SE

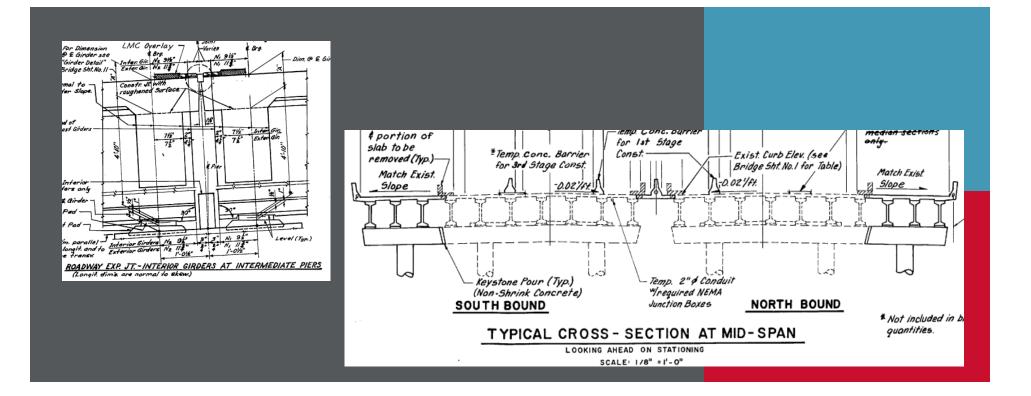


January 24, 2020

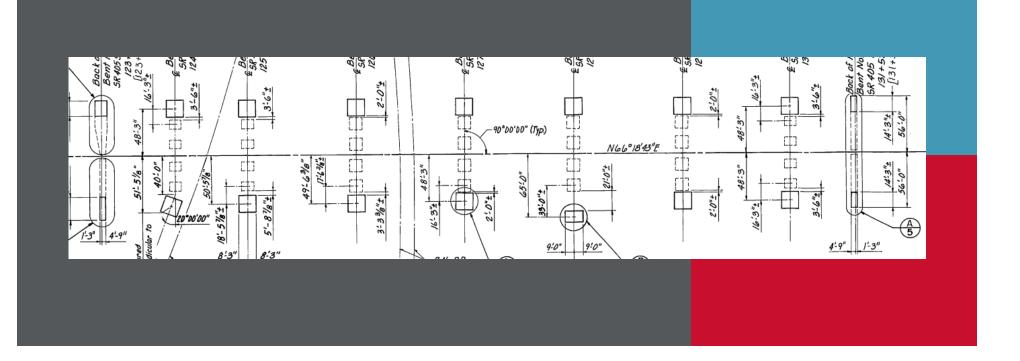
© 2016 HDR, Inc., all rights reserved.

10 Bridges

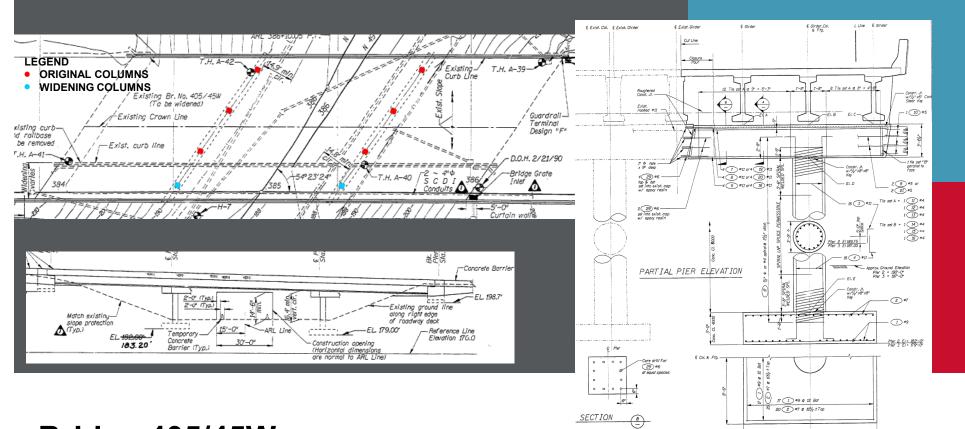
- 405/12
- 405/45W
- 405/46E
- 405/46W
- 405/47E
- 405/47W
- 405/48E
- 405/48W
- 405/56E
- 405/56W


BK		anter anter		SU		downspouts (Typ.)	to be removed	(IVP.)	barrier (1yp.)	
	-HQ-4			Telephone	Manhole 🖁	<u> </u>	-HQ-1		<u> </u>	<i>H-IA</i>
	Tukwila I.I Miles	-7/°30'30		e FEX.E	37. SR 405 6ta. 127/= B.N. Sta. 105	[27+03-7]] [Exist.S. <u>127+04.38 POT</u> 9+30.6 Exer 128, 405/12W 128, 27	B. Et 0.1. 0.02/ft 129		i / Crown Line 130	131 H-4
	* Modified Concrete Inter Collision Barriar	SR 405 5ta U.P. Sta. 450		9.126+90.02.001	H-I-Gas Box	Fridge 405/12E		2" \$ Condui+ 3 \$ Condui+ =======	Crown Line	HQ-3
	H-3	Pt. of Min.	<u> </u>	€HR-2 		and the second second	www.	R/W-	ATTUTION & G	
- -		6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Le S (Mea		False Openi	Surface Treatment	-			
Piles	332	Line Kert	Ftg. El. 13.5- NB (El. 12.5- SB)	3 22:0"	22:0" 22:	Min. Falsework Opening	54.44 54.44		32:95	
5-	Fta. FL 155	-14'-0" Min.	Ftg. El. 12.0 - NB-	FTTT Ftg. E	аларана 105-мв – Т Тіў		nnt Ftg. El. 1	2 .5 / 111	▲ Ftg. El. 14.5-J IIII	^L Slope Treatment to match exist. (Typ

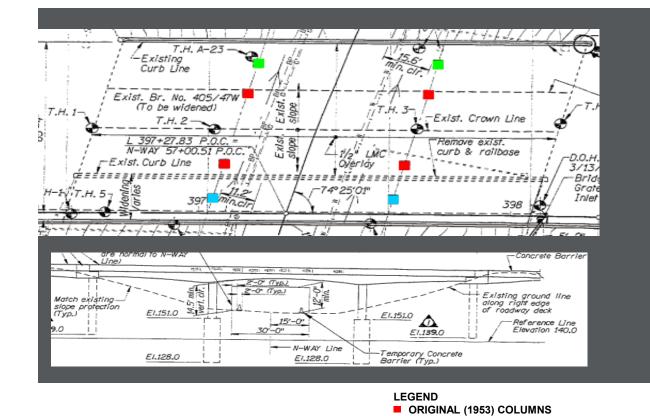
LEGEND


ORIGINAL COLUMNS
WIDENING COLUMNS

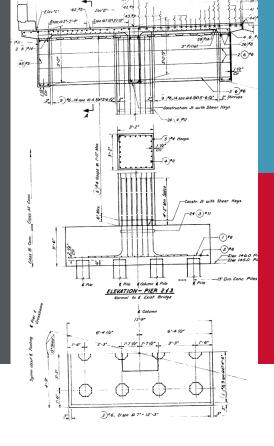
Bridge 405/12


4

Bridge 405/12



Bridge 405/12



HALF FOOTING PLAN

Bridge 405/45W

1965 WIDENING COLUMNS **1992 WIDENING COLUMNS**

Bridge 405/47W

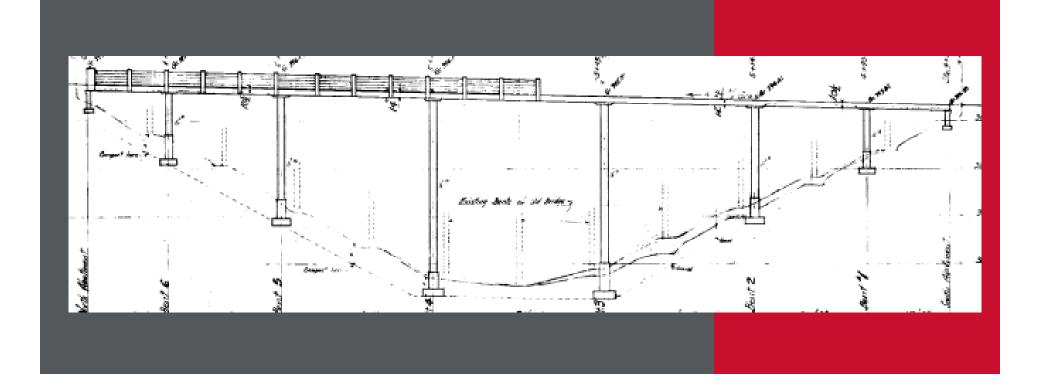
SEE VS. FEE - SEE: 7% EXCEEDANCE IN 75 YEARS

- FEE: 30% EXCEEDANCE IN 75 YEARS

DEMAND APPLIED TO FOUNDATION ELEMENTS TAKEN FROM THE ELASTIC DYNAMIC ANALYSIS PROCEDURE (NOT THE TYPICAL COLUMN OVERSTRENGTH FORCES)

Bridge 405/47W

PIER 3 – Original	(SEE)			PIER 3 – Widening	n (SEE)			PIER 3 – Original	(FEE)			PIER 3 – Widenin	a (FFF)			
PILE CAP	PILE CAP	C/D	Dem	Сар	PILE CAP	C/D	Dem	Cap	PILE CAP	C/D	Dem	Сар				
Cap M (k-ft)	C/D	Dem 898	Cap -	Cap M (k-ft)	0.79	1712	1352	Cap M (k-ft)	-	1380	-	Cap M (k-ft)	2.00	2777	5562	
Cap V (k)	0.52	828	434	Cap V (k)	0.80	1160	930	Cap V (k)	0.74	589	434	Cap V (k)	1.10	825	906	
Pile Axial (k)	0.72	185	134	Pile Axial (k)	0.72	197	142	Pile Axial (k)	1.07	125	134	Pile Axial (k)	0.90	158	142	
Pile Shear (k)	2.58	13	34	Pile Shear (k)	1.87	22	41	Pile Shear (k)	5.35	6	34	Pile Shear (k)	3.30	12	41	
Pile Pull Out (k)	0.03	98	2	Pile Pull Out (k)	0.03	86	2	Pile Pull Out (k)	0.06	38	2	Pile Pull Out (k)	0.07	30	2	
COLUMN				COLUMN												
Long. Disp. (in)	0.89	14.0	12.5	Long. Disp. (in)	2.36	11.4	27.0									
Transv. Disp (in)	1.13	6.0	6.8	Transv. Disp (in)	2.51	6.0	15.0									
Shear (k)	0.84	196	165	Shear (k)	1.66	427	708									
CROSSBEAM	-			CROSSBEAM												
Moment (k-ft)	0.49	1686	821	Moment (k-ft)	0.51	1616	821									
Shear (k)	0.51	426	217	Shear (k)	0.90	487	437									


Bridge 405/12

												_				
PIER 2 – Original	(SEE)	_		PIER 2 – Widening	g (SEE)	_		PIER 2 – Original (FEE)				PIER 2 – Widening (FEE)				
FOOTING	C/D	Dem	Сар	FOOTING	C/D	Dem	Сар	FOOTING	C/D	Dem	Сар	PILE CAP	C/D	Dem	Сар	
Moment (k-ft)	-	944	-	Moment(k-ft)	1.04	2988	3111	Moment (k-ft)	0.93	862	805	Moment (k-ft)	2.58	1205	3111	
Shear (k)	0.26	564	149	Shear (k)	1.50	632	949	Shear (k)	0.28	531	149	Shear (k)	2.76	344	949	
Overturning (k)	0.69	1612	1115	Overturning (k)	1.14	4980	5686	Overturning (k)	0.70	1518	1067	Overturning (k)	2.40	2276	5463	
Sliding (k)	1.30	147	192	Sliding (k)	0.87	412	359	Sliding (k)	1.32	137	181	Sliding (k)	1.82	189	343	
COLUMN				COLUMN												
Long. Disp. (in)	1.28	3.5	4.5	Long. Disp. (in)	3.80	3.2	12.2									
Transv. Disp (in)	1.36	1.7	2.3	Transv. Disp (in)	4.60	1.7	7.6									
Shear (k)	0.83	175	146	Shear (k)	1.36	410	558									
CROSSBEAM				CROSSBEAM												
Moment (k-ft)	0.40	1132	455	Moment (k-ft)	0.32	3794	1198									
Shear (k)	0.53	370	195	Shear (k)	0.79	508	401									

Bridge 405/45W

PIER 2 – Original	(SEE)		_	PIER 2 – Widening	g (SEE)	_		PIER 2 – Original		PIER 2 – Widening (FEE)					
FOOTING	C/D	Dem	Сар	SHAFT	C/D	Dem	Сар	FOOTING	C/D	Dem	Сар	SHAFT	C/D	Dem	Сар
Moment (k-ft)	-	929	-	Moment (k-ft)	1.68	4243	7133	Moment (k-ft)	-	824	-	Moment (k-ft)	21.5	767	16462
Shear (k)	0.65	437	284	Shear (k)	5.15	375	1928	Shear (k)	1.10	258	524	Shear (k)	19.5	99	1928
Overturning (k)	0.87	1788	1559	Axial (k)	5.39	520	2800	Overturning (k)	2.27	687	1559	Axial (k)	7.3	383	2800
Sliding (k) 0.98 102 99 COLUMN							Sliding (k)	4.00	25	99					
PILE CAP FOOTIN	PILE CAP FOOTING					1.6	7.7	PILE CAP FOOTIN	NG						
Pile Cap M (k-ft)	-	656	-	Transv. Disp (in)	4.05	1.9	7.7	Pile Cap M (k-ft)	-	425	-				
Pile Cap V (k)	0.92	761	703	Shear (k)	2.53	313	792	Pile Cap V (k)	1.42	494	703				
Pile Axial (k)	0.23	308	70	CROSSBEAM				Pile Axial (k)	0.41	170	70				
Pile Shear (k)	4.46	250	1117	Moment (k-ft)	0.45	4736	2121	Pile Shear (k)	10.4	108	1117				
Pile Pull Out (k)	0.02	221	4	Shear (k)	1.12	484	602	Pile Pull Out (k)	0.03	113	4				
COLUMN		-													
Long. Disp. (in)	0.61	3.6	2.2												
Transv. Disp (in)	0.72	3.1	2.2												
Shear (k)	0.69	245	169												
CROSSBEAM	CROSSBEAM														
Moment (k-ft)	0.44	1595	695												
Shear (k)	0.67	517	346												

Bridge 405/47W

Short Columns

Slides 1-3 Introduction

Slides 4-6 Bridge 405/12

- 8 span, PC/PS Concrete I-Girder Bridge 765 feet in length
- Originally constructed in 1965 as two independent structures with dropped crossbeams on 3'-0" diameter columns on pile caps on concrete piles
- Piers are typically perpendicular to the roadway alignment
- Widened in 1987 to both North and South and the deck between the original structures was connected.
 - o Cap beams were extended (North and South) but were not connected to one another
 - Intermediate piers founded on 4'-0" diameter columns on pile caps on concrete piles
 - o Pier 2 Southern column was angled at 20 degrees to maintain railroad clearance
 - Collision wall added at Pier 2 between the 2 southernmost columns
- Small widening to the South in 2009.
- Expansion Joints located at every pier (simple span beams)
- End Piers are stemwalls connected to concrete pile caps founded on piles

Slide 7 *Bridge 405/45W*

- 3 span, PC/PS Concrete I-Girder Bridge 207 feet in length
- Originally constructed in 1966
- Piers are skewed ~34 degrees
- Dropped crossbeams on 3'-0" diameter columns founded on spread footings
- Widened in 1993 to the East
 - Cap beams were extended (East)
 - Intermediate piers founded on 3'-0" diameter columns on spread footings
 - L-shaped end piers extended and supported on new spread footings
 - Expansion Joints located at every pier (simple span beams)
- L-shaped end piers are supported on spread footings

Slide 8 Bridge 405/47W

- 3 span, cast-in-place T-beam Bridge ~149 feet in length
- Originally constructed in 1953
- Piers are skewed ~15 degrees
- Integral diaphragms on 3'-2" square columns founded on spread footings
- Widened in 1965 to the East and West
 - Longitudinal Joint placed between East Widening and the existing deck (no diaphragm connection). Beam added to west was integral though later removed.
 - Intermediate piers founded on 3'-2" square columns on pile caps on concrete piles
- Widened in 1992 to the West
 - Integrally connected diaphragm
 - o Intermediate piers founded on 3'-2" square columns on drilled shafts
- Integral end piers are supported on a row of concrete piles

Slide 9 SEE vs. FEE

Safety Evaluation Earthquake (SEE) considers a spectrum based on a 7% exceedance in 75 years (975year return period)

Functional Evaluation Earthquake (FEE) considers a spectrum based on a 30% exceedance in 75 years (210-year return period)

These bridges are all on a designated lifeline route and are considered "Essential"

Slide 10-12 Selected Results

Selected results for one pier at each of the 3 bridges analyzed to show a comparison of the SEE vs. FEE results.

Findings:

The results were similar between all three bridges, though the foundations for bridge 47W did have better C/D ratios.

Our analysis found the FEE event typically resulted in displacements that exceed the column yield capacity and result in column plastic hinging. Therefore, the reduction in force is typically lower than hoped for. It should be noted that these results include a 1.4 overstrength factor when the column yield strains are exceeded (consistent with the FHWA Seismic Retrofitting Manual).

1950's and 1960's construction lacked a top mat of reinforcement in spread footings and pile cap foundations. Therefore, they are deficient for both the SEE and FEE events. We also attempted to use the cracked capacity of unreinforced concrete to check the vulnerability. Unfortunately there is inadequate strength and this deficiency is still present.

The bottom mat of reinforcement is typically inadequate for the SEE and FEE as are the shear and overturning.

The spread footings had many instances where they were adequate for the sliding demands.

Pile foundations showed several deficiencies for the SEE event. Piles were modeled with the best information as could be determined based on existing data. The pile foundations did not fare much better than the spread footings for the SEE event. The pile foundations shown for 405/47W are indicative of all the pile foundations analyzed (including later widenings). Typically several deficiencies were found at each pier including Axial, Shear, Bending, and Pull Out.

The largest deficiency shown is pile pull out. However, the C/D Ratios are likely higher than what is shown. Positive connection details could not be located. Therefore, the connection is assumed to be based on bond between the footing and the pile.

Frequently the 1950s and 1960s columns had inadequate shear capacity. The example pier chosen for Bridge 45W shows that there is adequate displacement capacity, however, this was not the typical result.

The crossbeams were typically detailed for a strength load case and were frequently vulnerable to column plastic hinging forces.

Slide 13 Alternate Project

A cautionary tale regarding upper level vs. lower level. There are instances where the geometry of an existing bridge does not lend itself to retrofit for the lower level event. This bridge has very short columns and very long columns. The scope for this project was to find retrofit solutions that would remove all vulnerabilities for both upper and lower events. Utilizing traditional methods (column jackets, pier strengthening, etc.) the upper level could meet a no collapse criteria. The lower level was incredibly challenging and a solution was ultimately found with concrete column wraps that met an essentially elastic criteria. Scenarios like this may require construction of new concrete columns and/or foundations.